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Abstract—This paper provides a survey of techniques for
state estimation in electric power distribution systems. While
state estimation has been applied in the monitoring and control
of electricity transmission systems for several decades, it has
not been widely implemented in distribution grids to date.
However, with the recent drive towards more actively-managed,
intelligent power distribution networks (“smart grids”) and
the improvements in monitoring and communications infras-
tructure, Distribution System State Estimation (DSSE) has
been receiving significant research interest. DSSE presents a
number of unique challenges due to the characteristics of
distribution grids, and many of the well-established methods
used in transmission systems cannot be applied directly. This
paper provides a detailed survey of the available methods for
DSSE, reviewing around 70 papers from the major journals.
In addition, it discusses the potential for applying Advanced
Metering Infrastructure (AMI) data and computational intel-
ligence methods in DSSE.
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I. INTRODUCTION

Since the initial development of the concept in the early
1970’s [1], power system State Estimation (SE) has become
a critical part of the operation and management of trans-
mission systems worldwide. Until recently, the application
of SE at the distribution level, i.e. Distribution System State
Estimation (DSSE), has not been of significant interest. This
is largely because distribution networks have traditionally
been designed and operated as passive systems, where
power flows are unidirectional and relatively easy to predict
and manage. However, distribution networks are seeing
increasing penetrations of distributed energy resources, such
as small to medium-sized Distributed Generation (DG),
demand-responsive loads, electric vehicles and devices with
storage capability. This has led to a requirement for im-
proved observability in distribution systems, and the need
for Distribution System Operators (DSOs) to take a more
active role in monitoring and controlling the operation of the
networks. DSSE has a crucial importance in this context.

Since distribution networks have different characteristics
to transmission networks (e.g. radial construction, high R/X
ratios, phase imbalances, and a much lower quantity and
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quality of available measurement data), many of the methods
and approaches developed for “conventional” transmission-
level SE cannot be applied directly to DSSE. Hence, a
number of SEs specifically designed for application at the
distribution level have been proposed in the literature in
recent years. However, despite the growing importance of
DSSE, the authors were unable to find a relevant survey
paper in the literature, summarising the current state of the
art, and discussing research trends and future directions in
the area of DSSE (one conference paper was found [2], but
the literature survey in this paper is not comprehensive, and
focuses mainly on Chinese-language publications). While
there have been several survey papers and books with liter-
ature reviews in the general field of power systems SE [3]–
[11], these deal primarily with techniques and methods
applied to transmission systems, and there are none which
focus specifically on the developments and applications of
DSSE. This paper aims to fill this gap by providing a survey
of the most important techniques and algorithms currently
available for DSSE.

This paper will also discuss the application of Advanced
Metering Infrastructure (AMI) data, such as smart meter
measurements, as inputs to the DSSE algorithms. Addition-
ally, the use of novel computational intelligence methods and
machine learning approaches and their potential benefits in
this context of DSSE will be explored. The paper is struc-
tured as follows: Section II describes the main techniques
and applications of DSSE, Section III outlines the current
state of the art, and highlights some of the most advanced
methods currently available. Section IV discusses the use of
AMI data and computational intelligence methods in DSSE.
Finally, conclusions are drawn in Section V.

II. DSSE TECHNIQUES AND APPLICATIONS

A. Conventional Power System State Estimation

SE is used to improve system observability, check for
and detect errors in both system measurements and net-
work parameters, and to mitigate against measurement and
communication system noise. Detailed summaries of the
main techniques and applications of conventional power
systems SE can be found in [3]–[5]. Fig. 1 shows a graphical
overview of the main processes and information flows. First,
a topology processor verifies that the network parameters
(e.g. line and switch statuses) provided to the estimator are
correct, ensuring that the network model is accurate and up



Figure 1. Graphical overview of the main functions provided by power
system state estimation.

to date [12]–[15]. Next, observability analysis is establishes
that sufficient measurement data is available for the SE. The
observability can be quickly determined by examining the
null space of the Jacobian matrix [16]. If the network, or
parts of it, are not observable, estimated values of network
inputs (often referred to as pseudo-measurements) need to
be provided. SE uses the available measurement data to
find a unique solution for the system state. Finally, bad
data processing is used to identify and remove data affected
by gross errors and noise, e.g. due to measurement or
communication system failures [17]–[21].

The network state is expressed as the vector x, containing
the voltages and power angles at each node in the system.
To estimate x, the set of measurements from the network, z,
is applied. The values in z can comprise of measurements
of power/current injections or voltage magnitudes at system
buses, measurements of active and reactive power flows in
system branches, pseudo-measurements (i.e. estimates) of
network quantities, or any combination of the above. This
forms a set of over-determined, non-linear equations:

z = h(x)− e (1)

where h(x) are the power flow functions corresponding to
each measurement in z, and e is the vector of measurement
errors. The most commonly-used approach to minimise
the objective function J(x) is the “conventional” Weighted
Least Squares (WLS) method:

minx J(x) = W̄(z− h(x))2 (2)

⇒ minx (z− h(x))T W̄ (z− h(x)) (3)

where: W̄ is the measurement weight matrix. Each of the
weights in W̄ are set according to the inverse of the variance

of the corresponding metered system measurement. This
allows the weights in W̄ to be adjusted so that the estimator
gives more weight to input data points which are known to
have greater accuracy. The minimisation in (1) is solved
iteratively as follows:

∆zn = z− h(xn) (4)

∆xn = (HTW̄H)−1 HT W̄ ∆zn (5)

∆xn+1 = xn + ∆xn (6)

where the Jacobian matrix, H = δh(x)/δx, and n is total
number of SE iterations.

The presence of bad data in the system measurement
data set can be detected by applying statistical tests to
the objective function J(x̂), and to the normalised residual
vector given by r = z− h(x̂), which is normalised by
rn = ρ−1

jj r, where ρjj is the diagonal of the covariance
matrix:

Cr = W̄−1 −H(x̂) G−1 HT(x̂) (7)

Bad data is detected and identified (provided there is
sufficient redundancy in the measurement data set) through
statistical testing, where the J(x̂) Performance Index and
Largest Normalised Residual Tests [7] are most commonly
used in conventional SE. Further studies into bad data
processing and removal are given in [17]–[19], [21], [22].
There are also alternative SEs discussed in the literature,
such as the Weighted Least Average Value estimator and
the Schweppe-Huber generalised M-estimator [3]–[8]. These
replace J(x) in (2) with a different objective function, but
otherwise the overall approach to SE remains the same.
One of the problems encountered in general SE is the
computational complexity of solving (2). In order to reduce
the computational burden, some authors have proposed a
fast decoupled SE [22], or carrying out a Direct Current
(DC)-only SE by neglecting all branch resistances and shunt
elements [5]. However, the methods and assumptions used
in transmission-level SE described above are often not valid
when considering distribution systems, and many of well-
established techniques used in “conventional” SE cannot
be applied directly [23]. This has motivated research into
DSSE, i.e. state estimators designed specifically for use in
distribution networks.

B. Distribution System State Estimation

Initial research into DSSE began in the 1990’s [24]–
[27]. DSSE presents a number of new challenges, since the
characteristics of distribution networks differ fundamentally
from transmission networks in the following ways:



• Construction: Most distribution networks have a radial
construction (whereas transmission systems are more
meshed), often with high R/X ratios.

• Redundancy: For technical and economic reasons the
number of measurement points in distribution networks
is much lower than in transmission networks. Systems
are under-determined, rather than over-determined.

• Measurement types: Most of the available input data
at the distribution level are measurements (or pseudo-
measurements) of power or current injections. Direct
measurements of voltages and power flows are rare.

• Scale and complexity: Distribution systems are diverse
(e.g. networks in rural areas are very different from
those in urban areas) and have very large numbers of
components. This means that the methods developed
for DSSE need to be scalable, have a relatively low
computational burden, and be applicable across a range
of different network types.

• Phase imbalances: Conventional SE techniques as-
sume that the network is a balanced system. How-
ever, distribution systems, can have significant phase
imbalances, requiring the use of full three-phase system
models.

Some of the techniques developed in order to overcome
these issues are discussed below.

1) Adapting Conventional WLS Techniques to DSSE:
Many of the earlier research papers on DSSE focussed
on adapting conventional WLS techniques to distribution
networks [24], [26]–[28]. However, there are significant
limitations to adapting approaches from transmission-level
SE to DSSE, particularly in dealing with noisy input data
and “robustness”, i.e. the ability of the estimator to reach a
unique solution of the minimisation described in (2) and (3)
in the presence of gross input errors [29]. In addition, due
to the construction of distribution systems (radial feeders
and high R/X ratios), the fast decoupled methods and DC
approximations often applied in conventional SE simply do
not work when applied to DSSE [30].

2) Load Estimation for DSSE: In DSSE, the number of
telemetered devices that can provide system measurements is
often very limited, and not sufficient to allow observability
of the entire network, or bad data identification. In many
cases, DSSE relies on pseudo-measurements of the demands
at each load point in the network, based on historical data
or load forecasts, which have significantly lower accuracy
than actual measurements. Load estimation techniques and
their application to DSSE are discussed in [31]–[33].

3) DSSE in Unbalanced Networks: In [25], a branch-
current-based SE methodology was developed, in which
network branch currents, rather than node voltages are used
to represent the system state x. This has the advantage that
the Jacobian matrix H can be decoupled on a per-phase
basis, allowing conventional SE methods to be applied to
distribution systems which are unbalanced, or have single-

phase or two-phase lateral feeders. A number of papers have
built on this approach in order to develop robust and accurate
three-phase DSSE techniques [34], [35].

III. STATE OF THE ART

This section briefly describes some of the most advanced
techniques and applications of DSSE in the literature.

A. Forecast-Aided State Estimation

The SE methods discussed in Section II are static in
nature, in that the estimation of the system state is only
dependent on the current “snapshot” of input measurements,
and not on previous input data values. There are also SE
techniques which are designed to recursively update the state
estimate in order to track changes during normal operation.
This approach has been called “dynamic” SE [36], however
the term “Forecast-Aided State Estimation” (FASE) is pre-
ferred by many authors to avoid confusion since the word
“dynamics” in power systems is strongly associated with
transient stability studies. An excellent summary of the main
concepts in FASE is given in [9]. Most FASE approaches
model the system using the state-space form introduced
in [37] and the Extended Kalman Filter (EKF) [38]:

xk+1 = Fkxk + gk + wk (8)

zk = hk(xk) + vk (9)

where Fk is the state transition matrix, gk is a vector
representing the trend behaviour of the state trajectory,
and wk and vk representing the process and observation
noises which are assumed to correspond to white Gaussian
noise with zero mean. At each time step k, the Jacobian
matrix Hk is evaluated with the current predicted states,
and used in the EKF equations. A short-term forecast (e.g.
several seconds/minutes ahead) of the state variables is
made, and each time a new set of measurements becomes
available, an “innovation analysis” can be used to determine
if the new measurements are significantly different from
the predicted values [39]–[41]. This analysis filters the new
input data using the EKF equations, allowing detection of
anomalies such as bad input data, and network configuration
or parameter errors [37]. While most of the FASE tech-
niques and applications proposed to date are focused at the
transmission level, FASE approaches are also interesting for
DSSE, particularly if high-resolution data is available from
synchronised metering devices, such as Phasor Measurement
Units (PMUs) [42], [43].

B. Multi-area and Hierarchical DSSE Techniques

Since distribution systems are typically very large and
dense, (e.g. comprising of many thousands of individual
nodes) one of the most challenging aspects of implementing
DSSE is the computational complexity. In conventional



SE methods, all measurements are typically processed in
one centralised SE. However, a better solution for large
distribution systems may be to split the networks into a
number of smaller sub-networks, or “measurement areas”,
in which the SE is solved locally [44]–[46]. The multi-area
SE can be expressed as [47]:

zm = hm(xm), m = 1, ...,M, (10)

where xm = [xim xbm], is the local state vector of mea-
surement area m, which contains the internal state variables
xim, border state variables xbm, for the total number of
measurement areas, M . In the multi-area approach, the SE
is solved locally within each measurement area, and data
is exchanged between areas only where they border each
other. In [46], a multi-area method has been developed
for DSSE, which meets the performance requirements for
real-time applications in very large networks. Traditionally,
transmission-level and distribution-level SE have been devel-
oped separately. However, with the increased requirements
for communication and interaction between transmission
and distribution network management systems, and several
authors have investigated the development of multi-level, or
hierarchical SEs, designed to integrate transmission SE and
DSSE [48], [49].

C. Advanced Distribution Management Systems

Due to the need for better situational awareness and
more active system support, there has been much interest
in adapting operational techniques, previously only used at
the transmission level, to distribution systems [50], [51]. A
number of studies have investigated “Advanced Distribution
Management Systems”, systems designed to optimise energy
management in distribution networks, where DSSE is an
important part of the methodology [51]–[55].

IV. FUTURE RESEARCH AREAS FOR DSSE

Application of Advanced Metering Infrastructure Data

The widespread introduction of smart meters means that
an unprecedented amount of detailed historical data on user
loads is becoming available. This data can be used to better
understand and model the behaviour of distribution network
loads, allowing to improve load estimation techniques, and
ultimately, DSSE accuracy. Some initial studies have been
made into the incorporation of smart meter data into DSSE
in [56], [57]. The use of smart meter data to estimate flows,
voltages, and losses in the low voltage distribution network
is demonstrated in [58]. In [59], the DSSE is carried out
using “compressed” measurements from smart meters and
DGs. While the are significant opportunities for further
work in this area, the scope for using smart meter data
as an input to DSSE for real-time applications is limited
for a number of reasons, including: data privacy issues, low
smart meter data rates (e.g. 15-minute or hourly intervals),

low data reliability, and the lack of smart meter data time-
synchronisation. However, there are potentially significant
benefits in terms of applying smart meter data for providing
insight into the behaviour of end-user loads, and in providing
a certain degree of visibility in parts of the distribution
system which were previously unobservable. A key feature
of future DSSEs will be the flexibility to incorporate multiple
types of input data, e.g. estimators capable of integrat-
ing both analogue and digital inputs (e.g. power/voltage
measurements and switch/breaker statuses [60]) and also
measurement data from a range of diverse sources, e.g.
SCADA, PMU, smart metering, DG units.

Computational Intelligence Methods in DSSE

Computational intelligence methods have been proposed
for a range of power systems and smart grids applications.
Machine learning techniques are particularly attractive for
DSSE. Artificial neural networks have already been used
extensively in the power systems research literature for load
estimation and forecasting [61]. In [62], a neural network
approach is used to create pseudo-measurements of load
point power injections for use in the DSSE algorithm.
In [63], a machine learning approach is used to develop
load estimates for DSSE. The advantage of this approach
is that load models are designed to recursively re-train
themselves as more measurement data becomes available,
leading to improvement of the performance of the DSSE
over time. Further research is required on the implementation
of “closed-loop” DSSE methods. While almost all of the
SE methods proposed in the literature have an open-loop
information flow, a closed-loop DSSE allows the predictive
database used to estimate loads (and DG outputs) to be
continuously updated and improved based on feedback from
the SE [64], [65]. An “autonomous” approach to DSSE
is presented in [66], in which the DSSE is designed to
automatically detect new connections (e.g. from DG units)
to the distribution network and update the system model
accordingly. The further application of machine learning
techniques will be crucial in allowing DSSE to be im-
plemented on a large scale. Without the automation of
the majority of control and network model management
functions, the implementation of DSSE across all of the
distribution networks in a DSO region would lead to an
unreasonable increase in operator workload.

It is likely that future DSSEs will make extensive use
of event-triggered approaches, particularly with regard to
carrying out advanced DSSE functions requiring significant
computational effort, such as model identification [67], [68].
In the event-triggered approach, the relevant DSSE is func-
tion carried out locally (i.e. in the network area of interest),
only when the measurements received indicate that there is
a potential issue, e.g. a suspicion of a network topology
error. This approach is particularly important in the context
of DSSE model identification, where the aim is to identify



the correct network model from a range of possibilities.
Model identification is particularly relevant in distribution
systems, where the switch statuses throughout the network
are typically unmonitored. The authors in [67] propose the
development of a model bank, in which all of the network
configurations that are critical to the DSSE are stored. Based
on the results of the DSSE applied to each network model,
the model which has the highest probability is selected as
the true network configuration using a Recursive Bayesian
approach. The a posteriori probability of the model ηi being
correct is given by:

p(ηi | εk) =
p(eki | ηi) p(ηi | εk−1)∑N

j=1 p(e
k
j | ηj) p(ηj | εk−1)

(11)

where N is the total number of models, εk ={
ek1 , e

k
2 , ..., e

k
N

}
is the set of error vectors of each model,

p(ηi | εk−1) is the prior probability, and p(eki | ηi) is the
conditional probability of the error in the ith model, given
model ηi is correct. The a priori probabilities, pki can be
calculated, using a Gaussian distribution as in [67]. The
algorithm works by assigning an equal initial probability
to each model, and carrying out a Monte-Carlo simulation,
updating (11) at each iteration. It is demonstrated in [67],
[68], that this approach can converge on the correct model
quickly and reliably.

V. CONCLUSIONS

This paper provides a detailed survey of techniques and
applications related to state estimation in electric power
distribution networks. It also discusses the potential for
applying AMI data in order to improve estimation perfor-
mance, and the application of novel computational intelli-
gence methods to DSSE. Despite the high level of research
interest in the last two decades, DSSE has not been widely
implemented in distribution networks to date. This has
mainly been due to a lack of investment in information and
communications technology infrastructure at the distribution
level. However, it is becoming more and more evident
that DSSE will play an important role in the operation
of future distribution networks, as these systems become
much more active and complex due to increasing pene-
trations of variable, highly-dispersed resources, e.g. small-
scale renewable energy, demand-responsive loads, electric
vehicles, electricity storage, and microgrids. Further work
will examine the adaptable and intelligent DSSE approaches
discussed in this paper in detail, in order to recommend the
best approaches for future large-scale implementation.
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