
Demand-Aware Price Policy Synthesis and
Verification Services for Smart Grids

Toni Mancini, Federico Mari, Igor Melatti,
Ivano Salvo, and Enrico Tronci

Sapienza University of Rome, Italy

Jorn Klaas Gruber, Barry Hayes,
and Milan Prodanovic

Instituto IMDEA Energı́a, Spain

Lars Elmegaard
SEAS-NVE, Denmark

Abstract—In management tasks for modern electricity net-
works the stakeholders face typically two conflicting objectives:
maximization of income (increasing demand) and reduction of
demand peaks (reducing costs). To improve management of
electricity distribution networks, an integrated service-based
methodology is presented in this paper. Namely, the proposed
approach: i) computes the operational constraints in order to
improve utilization of the whole network; ii) enforces those
constraints by focusing on each network substation separately;
iii) verifies that probability of violating those constraints in non-
nominal cases is fairly low. The feasibility of the approach has
been tested tested by using a realistic scenario taken from an
existing medium voltage Danish distribution network. In such
scenario, the proposed method improves the network utilization
and offers economic benefits for all the principal participants, i.e.
DSOs, retailers and end users.

I. INTRODUCTION

One of the most challenging problems in modern electricity
smart grids management is to find a trade-off between two
conflicting goals. Namely, on one hand both the energy retailer,
who sells energy, and Distribution System Operator (DSO),
who manages all aspects of the Electric Distribution Network
(EDN), want to sell as much energy as possible, without
forcing residential end users to cut their power demand. On the
other hand, if all users require energy at the same time (peak
hour), this may result in an economical damage (both for usage
of peak power plants and for transformer loss-of-life [1]) for
the DSO.

A. Contribution

In this paper we introduce a novel methodology to improve
EDN management and counteract the problem outlined above
(see Fig. 1). Namely, our methodology is based on three
integrated services, and exploits the EDN hierarchy induced
by EDN substations interconnection. The first service, which
we call EDN Virtual Tomography (EVT) service, considers the
whole EDN, detects possible violations of network constraints,
and computes operational constraints on several EDN compo-
nents, in order to improve EDN usage. Such constraints may
be easily casted by the DSO as desired power profiles on each
EDN substation s, thus defining the safety conditions for each
s. In order to enforce substations safety, without limiting the
power required by end users, the other two services of our
approach go a step down on the EDN hierarchy and work on
single substations. Namely the second service, which we call
Demand-Aware Price Policy (DAPP) service, redistribute the
power demand (load shifting) so that the constraints on the
input substation s are fulfilled. This is done by computing,
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Fig. 1: The proposed services architecture.

for each residential home u connected to s, an individualized
suggested power profile Pu (that is, different users may get
different power profiles), so that if all users follow their power
profile then the operational constraints on s are met. Each
user u is motivated to follow the suggested power profile
Pu by an individualized price policy based on Pu. Proposing
individualized price policies avoids that power demand peaks
are simply shifted through the day (power demand rebounds),
which would again violate constraints on substations. Since
users are not forced to follow their suggested power profiles,
the Price Policy Safety Verification (PPSV) service investigates
the consequences of users deviations from power profiles.
Namely, given a probabilistic model for such deviations, PPSV
is able to compute the probability distribution of the resulting
aggregated power demand. Such probability distribution is
used to feed back EVT, in order to simulate the effect of the
price policies on the EDN. Finally, such simulation results are
evaluated and the final verification outcome is sent to the DSO.
More in detail, our services may be described as follows.

1) EVT: The EVT service uses measurements of the local
energy consumption and generation obtained at certain points
in the EDN to compute voltages, currents and other physical
values for locations in the EDN not directly accessible by
sensors. The EVT service is intended to help the DSO to
improve EDN operating conditions, through improved network
observability, even in parts of the EDN where sensors are
not available. In addition, the EVT service is used to check
the technical feasibility of the price policies generated by the
PPSV service (see Fig. 1).



2) DAPP: The main goal of DAPP is to optimize EDN op-
eration at substation level, by avoiding peaks (peak shaving). In
order to do this, DAPP individually motivates users to perform
load shifting. This is achieved by proposing individualized
price policies to each of the homes connected to a given EDN
substation. Namely, the price policy output by DAPP for user u
(also called DAPP tariff in the following) is based on a power
profile region defining a low tariff area. Namely, when user
demand is inside [outside] the low tariff area, the user will
pay a low [high] tariff (high and low tariffs are decided by
the energy retailer). Note that, in order for DAPP to propose
economically viable individualized price policies, it must be
easy for each user to keep the demand inside the low tariff
area most of the time, thus lowering down the energy bill.

3) PPSV: The main goal of PPSV is to verify safety of
a given substation s, when to each residential user connected
to s is applied the corresponding individualized price policy
computed by the DAPP service. Since not all users will be
able to exactly follow their proposed price policies, PPSV
requires as input a probabilistic disturbance model describing
how residential users are foreseen to deviate. Such model may
be computed from historical data on user demand. As a result,
PPSV returns the probability distribution of the aggregated
power demand on s (i.e., the probability that the aggregated
power demand is in a given interval).

This paper is organized as follows. Sects. II, III and IV
describe the algorithms behind each service in our approach
(resp., EVT, DAPP and PPSV). Finally, Section V describes a
meaningful and real-world scenario, on which our approach is
evaluated. Such an evaluation is performed on both a technical
and an economical perspective, in order to show that our
approach is economically viable for both DSOs (as it improves
EDN management) and residential users (as it lowers down
their energy bills).

B. Related Work

Distribution systems are designed to deliver power from
the bulk transmission grid to end-users. Traditionally, power
flowed in one direction through the EDNs along radial feed-
ers, and these power flows were relatively straightforward
to predict based on historical data. With the large-scale in-
tegration of Distributed Energy Resources (DER), such as
Photovoltaic (PV) installations, demand-responsive loads, and
storage devices, power flows in the EDN become much more
complex and variable. As a consequence of this, more detailed
knowledge of the EDN state is required, and a more active
approach to managing network congestions and constraints is
required from DSOs. This has led to the adoption of network
management techniques in EDNs, which were previously only
used in transmission systems, such as state estimation and
advanced energy management systems [2]. State estimation
has been a standard feature of transmission network opera-
tion for several decades, where it is applied to improve the
observability of the network, and reduce the impacts of noise
and errors in system measurement data [3]. Recently, there has
been significant research interest in developing state estimators
specifically for use in EDNs [4]. Distribution network state
estimation is often applied as part of an advanced distribution
management system, designed to monitor and optimise the
energy flows and operation of active EDNs with significant
DER [5], [6]. The EVT service developed in this paper

employs state estimation to the EDN in order to accurately
determine the grid state, and then uses this information to
provide warnings, alarms and recommendations to the DSO.

Demand Side Management (DSM) [7] approaches are used
to regulate EDN by acting, directly or indirectly, on end users.
There are two main approaches to DSM, namely Direct Load
Control (DLC) and Autonomous Demand Response (DR).
With a DLC approach the utility (DSO) remotely controls
energy consumption by curtailing high-load household ap-
pliances. With a DR approach each user receives an energy
price policy for the next few days. Users will autonomously
manage their loads (e.g., by reducing their consumption at
peak hours) and their generation (say, from PV panels) so
as to minimize their energy bill. This, in turn, will optimize
EDN operations. DAPP follows a DR approach, based on the
Inclining Block Rate (e.g., see [8]) approach. Note that indeed
DAPP synthesizes price policies starting from system level
formal specifications. Other works on synthesis from system
level formal specifications (focusing on synthesis of controllers
for hybrid systems) are in [9], [11], [12], [10]. As for price
policies computation, many works are based on distributed
algorithms and architectures (e.g., as in [13]). On the contrary,
DAPP is based on a centralized algorithm which computes all
required price policies. A centralized (Neural Network based)
approach similar to the one in DAPP is in [14]. Differently
from [14], DAPP assigns a different price policy to each user
in the same area (e.g., connected to the same substation),
considers the case where users are producing energy, and uses
a Linear Programming (LP) based approach. Finally, we point
out that the mechanism used by DAPP to encourage users to
follow such a suggested behaviour is pricing, which is decided
by the energy retailer based on economical as well as social
considerations, as described, e.g., in [15].

In statistical model checking (e.g., see [16], [17], [18], [19])
approaches, scenarios are sampled until a certain degree of
confidence in the estimated distribution probability (of safety
violation) is achieved. PPSV is based on such techniques, and
adapts the works in [18], [19] to the smart grid context. In
a smart grid context, usage of exhaustive methods (instead of
statistical ones) for safety analysis purposes has been studied,
e.g., in [20]. However they are plagued by the so called state
explosion problem. Since PPSV aims at evaluating safety of a
large system (hundreds of homes connected to a substation),
the approaches used in the above papers cannot be used in our
context. An exhaustive simulation-based approach (applied on
verification of satellite procedures) similar to the one used for
PPSV has also been studied in [21].

Summing up, to the best of our knowledge, the integrated
service-based approach we present here has not been previ-
ously proposed in the literature.

II. EDN VIRTUAL TOMOGRAPHY

The supervision and control of distribution networks be-
comes increasingly important with the integration of Dis-
tributed Energy Resources (DER). High penetrations of DER
results in an increase in the variability of EDN power flows
and, as a direct consequence, more detailed knowledge on the
network state is required in order to manage the EDN. How-
ever, in most EDNs only few measurements are taken due to
technical or economic issues. The use of a detailed simulation



Fig. 2: Inputs and outputs of the two modules of EVT.

model of an EDN allows a wide range of physical values to
be computed and the state of the network to be estimated. The
results of the state estimation can then be used to automatically
generate warnings and alarms if a value approaches or exceeds
its limits. The EVT service described below is comprised of
two modules, or functions: (A) the estimation of the EDN state;
and (B) the generation of warnings, alarms and advice for the
DSO.

1) State Estimation: The EVT module to estimate the
state of the grid is given in Fig. 2. The inputs are the static
network parameters (bus and branch information), along with
measurement data (e.g. real-time recordings of voltages, power
angles, active/reactive power injections, active/reactive power
flows). These data are fed to the state estimator described
in [22], which identifies bad data, such as erroneous or missing
values in the input measurements. Power flow analysis is then
carried out in order to calculate the grid state, expressed as a
set of estimates of the voltages, power injections, and power
flows throughout the EDN.

2) EVT Warnings, Alarms and Recommendations: The
second function of the EVT uses the estimated grid state
to generate warnings and alarms, and give recommendations
to the DSO, Fig. 2. This EVT module requires additional
information on the physical limits of the EDN, as well as
historical data in order to detect unusual values. The EDN
physical limits do not frequently change and are shown in
Fig. 2 as parameters rather than input values. However, these
parameters can be adjusted to allow the EVT to investigate
EDN performance during scheduled outages (e.g. lines down
due to maintenance), or unscheduled outages (network faults).

The EVT compares the input values and the supplied
parameters and checks the limits of different components of
the EDN. If limits are violated, alarms are provided, and
appropriate corrective actions (e.g. network switching, load
management) can be simulated, allowing recommendations to
be made. In addition, the EVT can be configured to provide
general recommendations to the DSO for managing voltage,
congestions and losses in the EDN. This may be casted by the
DSO as desired power profiles for EDN substations, which are
then used by DAPP and PPSV services.

III. DEMAND-AWARE PRICE POLICY

In this section we describe our DAPP algorithm. To this
aim, we first define the notation we use (which is in common
with PPSV). A time-slots set T is a finite set of contiguous
time-slots, all having the same duration. A power profile is
a function P : T → R. A power profile tube (or region) is
a pair of power profiles (Pl, Ph) defined over the same T s.t.
Pl(t) ≤ Ph(t) for all t ∈ T . A power profile P follows a power
profile tube (Pl, Ph) if and only if Pl(t) ≤ P (t) ≤ Ph(t)
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Fig. 3: DAPP input and output on a single DSO substation.

for all t ∈ T . Finally, a Linear Programming (LP) problem
is a minimization problem over a set of linear inequalities
(constraints) on real variables.

We may now describe in detail input and output for our
DAPP algorithm (for a high-level view, see Fig. 3). Namely,
DAPP requires the following input: (i) a set of homes U
connected to a substation s; (ii) a time-slots set T (typically
with a time span one month in the future); (iii) the desired
power profile Ps on T for the substation s, as decided by
the DSO on the basis of EVT output; (iv) four per-unit
tariffs bl ≤ bh, sl ≤ sh ∈ R+ coming from the energy
retailer: respectively, the low buy, high buy, low sell, and high
sell tariffs; (v) for each user u ∈ U , a power profile tube
(Qu,l, Qu,h) on T , so that the actual power profile for user u is
foreseen to follow (Qu,l, Qu,h) on T . For a method to compute
such a demand forecasting, see e.g. [23]. Finally, the output
of DAPP is a set of individualized price policies, defined on
the basis of individualized power profile regions (Pu,l, Pu,h)
on T , which we also refer to as low tariff areas, for each
u ∈ U . Namely, the DAPP (output) tariff, for a given user u,
is defined to incentivize the user to follow the output power
profile region as follows: if u follows (Pu,l, Pu,h), then either
bl (if u is consuming energy) or sh (if u is producing energy)
is applied, otherwise bh and sl are applied, respectively.

A. DAPP Algorithm

In order to achieve such input-output behavior, DAPP
creates and solves an LP problem P defined by the following
constraints. Our goal is to provide each user with a proposed
power profile (Pu,l, Pu,h) s.t. i) the user is incentivated to
follow it and ii) if all users follow it, then the aggregated
power demand on s is nearly always below Ps. In order to
achieve the first goal, our LP P states that (Pu,l, Pu,h) must
be kept as close as possible to users forecasted actual needs
(Qu,l, Qu,h). To this end, P minimizes the maximum distance
between (Pu,l, Pu,h) and (Qu,l, Qu,h). Moreover, P states that
(Pu,l, Pu,h) must be wide enough, i.e. Pu,h(t) − Pu,l(t) ≥ 1
kW for all u ∈ U, t ∈ T . As for the second goal, P
states that the maximum aggregated power demand on a
given time-slot t (i.e., P̂ (t) =

∑
u∈U Pu,h(t)) must be kept

lower than the safety bound Ps(t). However, if for some
t the aggregated power demand is greater than Ps(t) (i.e.,
Q̂(t) =

∑
u∈U Qu,h(t) ≥ Ps(t)), this would be unfeasible.

Thus, for such t, our LP P states that P̂ (t) must be at
most the average on T of Q̂(t). In this way, the exceeding
power demand is re-distributed among all users in a fair way.
Finally, regulations or economic considerations typically limit
the maximum amount of energy sent to the grid. To this aim, P
states that the aggregated minimum power must be greater than
0:

∑
u∈U Pu,l(t) ≥ 0. Summing up, DAPP algorithm consists
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Fig. 4: PPSV input and output on a single DSO substation.

in creating an LP problem P described as above, solving
P using an LP solver (namely ILOG CPLEX) and finally
extracting the actual DAPP output (i.e., values for (Pu,l, Pu,h))
from the solution for P as returned by the LP solver.

IV. PRICE POLICY SAFETY VERIFICATION

In this section we describe our PPSV algorithm (Fig. 4).
PPSV takes as input the following arguments: (i) all inputs
required by DAPP (see Sect. III); (ii) the DAPP output
(Pu,l, Pu,h). From (Pu,l, Pu,h) it is possible to compute the
DAPP collaborative user, that is, for each residential user u,
a power profile P̃u which follows both u (foreseen) power
demand tube (Qu,l, Qu,h) and DAPP proposed low tariff area
(Pu,l, Pu,h). Computation of the DAPP collaborative user, for
each residential user, is performed by suitably adapting the
LP problem described in Sect. III; (iii) a quantization step
γ ∈ R; (iv) a probabilistic disturbance model describing how
users may deviate from their proposed power profile tube.
The disturbance model is defined by means of a function
dist : A → [0, 1], being A a finite subset of [−1, 1], with∑

d∈A dist(d) = 1. Namely, dist(d) = p iff, for each user
u, p is the probability that, in a random time-slot t, the
actual power used by u in t is P

(d)
u (t) = P̃u(t)(1 + d);

(v) confidence and tolerance on the overall PPSV output
δ, ε ∈ [0, 1]. As for the output, PPSV aims at providing
the distribution probability on the aggregated power demand
of s induced by the probabilistic disturbance model. In this
way, the robustness of DAPP tariffs may be evaluated by
checking that the probability that the aggregated power demand
is greater than Ps (i.e., the probability of safety violation)
is low. This must be done for each v ∈ Ps(T ), so that
the probability of safety violation is checked for each safety
bound defined on a time-slot subset. To this aim, PPSV
computes a distribution probability aggrv for each v ∈ Ps(T ),
s.t. with confidence 1 − δ the maximum relative error on
probabilities is bounded by ε. In formulas, PPSV outputs a
set of functions {aggrv : R → [0, 1] | v ∈ Ps(T )} s.t. R is
the finite set of all possible γ-quantized values (i.e., for all
r1 ≥ r2 ∈ R, r1 − r2 = kγ with k ∈ N) for aggregated
disturbed DAPP collaborative profiles

∑
u∈U P

(d)
u (t). Each

function aggrv is s.t. aggrv(r) = p iff, taken a random time-
slot t ∈ P−1s (v), with confidence 1 − δ the probability that∑

u∈U P
(d)
u (t) ∈ [r, r + γ) is in [p(1 − ε), p(1 + ε)]. Finally,

pairs (r, aggrv(r)) for which aggrv(r) > 0 are sent back to
the EVT, in order to set meaningful and challenging scenarios
for EDN safety verification (see Fig. 1). The final verification
outcome computed by EVT is then sent back to the DSO.

A. PPSV Algorithm

In order to achieve such input-output behavior, for all
v ∈ Ps(T ) and for all γ-quantized values r ∈ R we proceed as

follows. Following the Monte-Carlo based approach discussed
in [18], [19], we generate N = f(δ, ε) random values for
the aggregated power demand under the given disturbance
scenario. Namely, each of such N values is obtained by picking
at random a time-slot t ∈ P−1s (v) and, for each home u ∈ U ,
a value du ∈ A, and then computing

∑
u∈U P

(du)
u (t). Finally,

aggrv(r) =
S
N , being S the number of such trials for which∑

u∈U P
(du)
u (t) ∈ [r, r + γ).

V. EXPERIMENTAL RESULTS

In this section we show the technical and economical
viability of our approach by presenting the results we obtain
on a reference scenario based on the medium voltage EDN
actually used in a Danish village and managed by Danish
DSO SEAS-NVE. Such EDN is a 10 kV system with a
mostly radial structure and a peak demand of 3.2 MW, 77%
of which is made up of residential users with significant PV
generation. Historical hour-by-hour data on residential users
energy consumption/production is available from October 2012
to October 2013 (13 months). In order to set up a scenario
in which a substation may not be able to satisfy user power
demand while retaining its safety, thus making load shifting
necessary, we proceed as follows. We choose the substation
having the maximum number of homes equipped with heat
pumps (which maximizes loads). This results in a substation
s with 13 homes. We then create a pool of 130 homes, by
replicating 9 times (plus the “original” copy) each of the
aforementioned 13 homes. In this way, for some periods of
the year (namely, in Winter), the substation is not always able
to satisfy all user aggregated power demand while retaining
substation safety.

1) EVT Evaluation: Evaluation of EVT is performed in
one of the most critical loading scenarios on the given EDN,
which take place in February 2013. Here, we present results of
EVT when initially invoked to determine network operational
constraints (Fig. 5, where price policies have not yet been
proposed to users) and when invoked on the most likely worst
scenario as computed by the PPSV service (Fig. 6, resulting
on applying price policies to end users). In both such figures,
MVA flow in each network branch is indicated by the size
of the flow arrows (green arrows indicate active power flow,
while blue arrows indicate reactive power flow). Larger flow
arrows indicate that flow is a higher percentage of the branch
MVA thermal rating. The EVT is set up to issue a warning to
the DSO when any branch MVA flow exceeds 80%. An alarm
is issued if any branch flow exceeds its thermal constraint, i.e.
100%. In the case of Fig. 5, where DAPP and PPSV are not
used, the MVA flow has reached 103% of its thermal rating,
illustrated by the red arrows. As a consequence, EVT advises
that the network switches should be re-configured to alter the
power flows, or that load management could be carried out
in certain parts of the EDN in order to reduce congestion.
From such recommendations, the DSO may define the desired
power profile for the substation s in the reference scenario to
be at 80% of its nominal power (i.e., 400 kVA) at certain time
periods.

2) DAPP Evaluation: Evaluation of DAPP is performed
by running DAPP 13 times from October 2012 to October



Fig. 5: Detail of EVT output
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Fig. 7: DAPP output for a household at end of February 2013.

2013 on the reference scenario. As for forecasted power
profile region, we define Qu,l(t) = (1 − 0.1)P̃u(t) and
Qu,h(t) = (1+0.1)P̃u(t), being P̃u(t) the users power demand
from historical data. This allows us to evaluate DAPP without
having to implement a reliable demand forecasting service. As
for the energy tariffs, we use the following values: bl = 0.15,
bh = 0.6, sl = sh = 0.08 EUR/kWh, which are used in
homes involved in a trial run by SEAS-NVE. Finally, as for
the desired power profile Ps, we set it to be always 80%
of substation nominal power (i.e., Ps(t) = 320 kW). This
avoids synchronized peak rebounds among s and other EDN
substations, which would be possible if the 80% limit is set
only at peak hours as suggested by EVT output. From the
technical perspective, for each month DAPP is able to compute
the low tariff areas for all 130 users in the reference scenario
in at most 45 minutes, requiring at most 1GB of RAM. As
a result, if all users follow the DAPP price policies (i.e.,
they follow the collaborative power profile as computed in
Sect. IV), then peaks are indeed avoided, as it is shown in
Fig. 8. Namely, Fig. 8 shows both the user power profile
from historical data and the DAPP collaborative power profile,
both aggregated on all 130 homes in the reference scenario.
As a result, while historical data are often even higher of
the 120% of substation nominal profile, collaborative users
are never above 100%, and almost always under 80%. This
shows that DAPP is indeed able to enforce network safety.
From the economical perspective, we compare the two energy
bills payed, in the reference scenario, when it is applied
(i) the DAPP tariff; (ii) the flat tariff currently used in the
village of the reference scenario (0.28 EUR/kWh for energy
consumption, 0.08 EUR/kWh for energy production). As for
users behavior, in the flat tariff case we assume they follow
the power profile from historical data. As for the DAPP tariff
case, we take into account two possibilities, thus making two
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Fig. 8: DAPP output on Winter aggregated on all homes.
different comparisons. In the first one, users ignore the DAPP
tariff (i.e., they continue to follow the power profile from
historical data). As a result, they obtain, in the reference
scenario, a minimum (on the set of 130 homes) 27% gain (36%
on average) if the DAPP tariff is applied. This first comparison
shows that DAPP tariffs are easy to follow for users. Fig. 7
graphically shows this fact for the period and the home with
maximum load by plotting: (i) the DAPP tariff (Pu,l, Pu,h),
where Pu,l is denoted with dashed curve “down” and Pu,h

with dashed curve “up”; (ii) the DAPP “collaborative” user
power profile; (iii) the user power profile from “historical”
data (i.e. users which ignore the DAPP tariff). Finally, in the
second comparison users with DAPP tariff follow the DAPP
collaborative power profile. As a result, the collaborative users
obtain a minimum (on the set of 130 homes) 46% gain (49%
on average). This second comparison shows that DAPP tariffs
enable money saving for end users.

3) PPSV (and back to EVT) Evaluation: Finally, evaluation
of PPSV (also showing how EVT handles PPSV output,
see Fig. 1) is performed by running PPSV on the reference
scenario and using the price policies output by DAPP on the
reference scenario. As for the disturbance model, it is defined
as follows. We have A = {−0.4,−0.2, 0, 0.2, 0.4}, thus users
may deviate up to 40%. The disturbances distribution proba-
bility is designed so that the higher the deviation, the lower
the probability. Namely, dist(±0.4) = 0.1,dist(±0.2) =
0.2,dist(0) = 0.4, thus the probability of a deviation is 60%.
Finally, as for the other PPSV input, we set quantization
γ = 10 kW, tolerance ε = 0.05 and confidence 1−δ = 99.99%.
As a result, from the technical perspective, PPSV completes
each of the 13 runs within 13 minutes of computation time at
most (7 minutes on average) and 1GB of RAM at most. As
for the output evaluation, in Fig. 9 we show the result in the
month of February 2013. Fig. 9 may be easily used to show
DAPP output robustness on the reference scenario. In fact, by
interpreting results from EVT on the whole EDN, we have that
the integral of each curve for aggregate demand values beyond
320 kW (80% of the nominal substation power) measures
the probability that the substation is overloaded. The integral
for aggregate demand values beyond 480 kW (120% of the
nominal sustation power) measures the probability that the sub-
station is in unsafe critical conditions. Given this, from Fig. 9
we can observe that, even if users reasonably deviate from
their individualized price policies, the probability of a safety
violation is very low. Finally, the probability distribution shown
in Fig. 9 is sent back to the EVT for the final verification. To
this aim, Fig. 6 shows the (selected) output from the EVT
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for the most likely “worst-case” loading scenario. If compared
with Fig. 5 (where the price policies output by DAPP were not
applied to end users), we note that the thermal overloading in
the EDN has been removed, with the maximum MVA flow at
96%. This price verification process closes the loop between
the EVT, DAPP and PPSV services, demonstrating that the
application of the three services demonstrated in this paper
can be used effectively manage EDN technical constraints.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a novel service-based methodol-
ogy to improve EDN management. Namely, with our approach,
all actors involved obtain a gain: residential end users are able
to lower down their energy bills, while the energy retailer and
the DSO are able to sell as much energy as possible while
avoiding EDN overloading (thus preserving EDN safety).
Our approach is based on three integrated services: (i) EVT
monitors the whole EDN and detect overloaded subnetworks;
(ii) given an EDN substation s, DAPP proposes individualized
price policies (based on individualized power profiles) to
all end users connected to the substations, so that desired
operational constraints on s are met if each user follows the
proposed power profile; (iii) PPSV proves that operational
constraints on substations are met with high probability also
when users are allowed to (reasonably) deviate from their
proposed power profile.

We showed the feasibility of our approach on a medium
voltage EDN in a Danish village. Namely, in the reference
scenario, EVT was able to suggest to DSO operational con-
straints on each substation in order to improve EDN usage
(by avoiding overloads). By focusing on the most critical
of such substations s, we showed that DAPP was able to
motivate user to move their loads in order to (unknowingly)
meet the operational constraints on s. Finally, PPSV showed
that operational constraints on s in the reference scenario are
met even if end users deviate from the proposed power profile
for the 60% of the time.

As future work we plan to further improve our services,
by refining methods for dealing with bad data and missing
measurements in the input data (EVT), by investigating price
policies that explicitly take into account users energy storage
capabilities (DAPP) and by devising parallel verification ap-
proaches (PPSV).
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